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A revision of the general method of Cihla and Pliva to obtain complete redundancy relations for 
the internal angle deformation coordinates in branched molecules is made. As examples, redun
dancy conditions are given for octahedral XY 6 and trigonal bipyramidal XY 5 molecules. 

The use of the internal valence coordinates (i.e., the bond-streching, angle-defor
mation, etc. coordinates) allows a very convenient description of molecular vibrations. 
These coordinates, besides facilitating the advantageous use of properties of mole
cular symmetry, allow us to work with force constants of a highly physico-chemical 
significance and a greater capacity of transference to other similar molecules. The 
coordinates, however, are not necessarily independent and redundancy relations may 
exist among them l - 4 . 

One particularly discussed aspect has been that of the possible non-linear character 
of such redundancy relations and the consequences which may be derived from it 
with respect to the appearance of linear force constants (or intramolecular tension 
parameters) in harmonic force fields s- 10 . The conclusions of such discussion can be 
resumed shortly in the following: 

a) In general valence-force fields use is normally made of rectilinear internal coor
dinates, among which only linear redundancy relations may exist. 

b) In model force fields, U rey-Bradley's for example, geometrically defined curvi
linear internal coordinates are generally used, among which non-linear redundancy 
relations may exist9 - 10• 

c) The elimination of redundancies in ,the potential function expressed in terms 
of the curvilinear coordinates and the further transformation of this into independent 
rectilinear coordinates brings with it the appearance of a linear force constant (or 
intramolecular tension parameter) for each of these redundancy relationss ,7 ,9 -11. 

The only exception is found in those cases, where the redundancy relations are exactly 
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linear, since then there will be no contribution of the linear force constants in the 
harmonic force fields. 

In spite of the abundant use of the model force fields, it is not all that frequent, 
however, to find studies in which the contributions of the mentioned linear force 
constants (or intramolecular tension parameters) are considered in harmonic terms 
of the potential function. 

Shimanouchis was the first to introduce such contributions when he studied, using 
Urey-Bradley's force fields, a series of molecules with tetrahedral and pseudotetra
hedral geometries. He put forward the following redundancy relation for the defor
mation of the six interbond angles: 

(1) 

This is correct up to the second order, for a tetrahedral geometry. 
Since then, starting with the so-called primitive vectorial redundancies4 , methods 

have been proposed which allow in general form the calculation of the redundancy 
relations for cyclicalll and branched molecules4 •6 . 

Although we are generally in agreement with the mathematical basis of these general 
treatments, we think they provide rather incomplete results when applied in the cases 
of branchings which involve more than four bonds. In such cases, the above treatment 
does not entirely respect the equivalence that must exist for reasons of symmetry 
among the different inter bond angles. It is the purpose of the present paper to give 
a complete treatment of the problem for a branching of the general type XYn , with n 
bonds starting from the central atom X to the n end atoms Y; the treatment is applied 
to the particular cases of octahedral XY 6 and trigonal bipyramidal XY 5 molecules. 

REDUNDANCIES IN BRANCHED NON-PLANAR XYn ATOMIC GROUPS 

The branching redundancies appear because in an n dimensional space, only n in
dependent vectors can be defined. 

Let us consider n bonds starting from the central atom X to the n end atoms Y 
and define n unit vectors along the n bonds. If n ~ 4 the corresponding unit bond 
vectors will not all be independent in a three dimensional space. A relationship of 
the following form must exist among each four of them: 

(2) 

where the coefficient C t will be given by the molecular geometry. These coefficients 
can be calculated by the scalar multiplication of Eq. (2) by four different unit vectors 
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(Bp, Bq , Br , B.) so that four linear equations are obtained in the unknown coefficients 
Ct. For a system of homogeneous linear equations there are non-trivial solutions only 
if the determinant of the coefficients is zero. So the following relationship must be 
verified: 

Bi • Bp Bj. Bp Bk' Bp BI' Bp 

Dijkl = Bi • Bq Bj • Bq Bk • Bq BI' Bq =0 (3) pqrs 
B; • Br Bj • Br Bk' Br BI • Br 

Bi • Bs Bj • Bs Bk' B. BI' B. 

for any four unit bond vectors of the atomic group XYn • 

It is convenient to select three independent unit bond vectors, for example Bi' Bj' Bko 

as a basis in terms of which the remaining bond vectors can be expressed as functions 
of these three through relations of the type (2). For non-planar branchings XYn , 

there will be a total of(n - 3) equations of the type D:m = 0 and (n - 3) (n - 4)/2 
of the type DH~! = 0, which will have the following forms (it holds that Bi • Bj = 
= cos O(iJ 

1 cos O(ij cos O(ik cos (XiI 

ijkl cos (Xji 1 cos (Xjk cos (Xjl 
=0 (4a) Dijkl = 

cos (Xki cos O(kj 1 cos (Xk! 

cos (Xli cos O(lj cos O(lk 1 

and 

1 cos O(ij cos (Xik cos (Xii 

Dijkl _ cos O(j; 1 cos (Xjk cos (Xjl 
= 0, (4b) ijk. - cos (Xki cos (Xkj 1 cos O(u 

cos O(si cos (Xsj cos (Xsk cos (X. I 

respectively, where (Xij is the angle formed by the unit bond vectors i and j. The total 
number of equations available for a certain basis (Bi' Bj' Bk) will be therefore (n - 2) . 
. (n - 3)/2. 

Taking in the previous determinants i = 1, j = 2, k = 3 and expanding them, 
it is possible to write Eqs (4a) and (4b) in the following algebraic forms: 

and 

3 

L {sin2 0("1I cos2 (X1'1 + 2 cos 0(1" cos (XIII (cos (X,,'1 cos 0(11'1 -
,,<II 

'1*1',11 

- cos (X"II)} = {1 - cos2 (X1.2 - cos2 (X1.3 - cos2 (X23 + 
+ 2 cos 0(12 cos (X1.3 COS(X23} (Sa) 

3 

L {sin2 (X"II cos (X1'1 cos (XS'1 + (cos (X,,'1 cos (X1I'1 - cos (X"II) • 
,,<II 

'1*",11 
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(5b) 

The instantaneous valence angles, IXI1 P' can be expressed in terms of the equilibrium 
angles, lX~p, and the angle-deformation coordinates, AlXl1p: 

(6) 

We can expand the trigonometric functions in Eqs (5a) and (5b) in series of the 
displacement coordinates which, if sufficiently small values are taken, allow us to 
retain terms of up to only the second order: 

(7a) 

(7b) 

According to Cihla and PIiva6 , when the relationships (7a) and (7b) are substituted 
in Eqs (5a) and (5b), the general redundancy relations would be obtained among the 
angle-deformation coordinates for a non-planar branching XYn • However, we think 
that this treatment is incomplete for the cases of branchings when n > 4 and as 
a result that the relationships obtained in this way do not have a general character. 
Where we disagree is that if n > 4 and only a single basis of the unit bond vectors 
is taken, in the resulting redundancy relations the angle-deformation coordinates 
corresponding to the vectors of the basis and outside of it are given a different weight 
and so the equivalence is not respected which through symmetry must exist among 
such coordinates. We think that in order to obtain complete redundancy relations 
it is necessary to repeat the treatment already described with each and every possible 
bases, even with those with planar unit bond vectors in the equilibrium configuration. 

In the following we apply these ideas to the calculation of complete redundancy 
relations of some of the more important branched molecular species. 

Octahedral XY 6 molecules 

Fig. 1 shows the spatial distribution of atoms X and Y in an octahedral XY 6 molecu
le. For this type of molecules, once a fixed basis of unit bond vectors (Ilj' Ilj' Ilk) has 
been established, there will be three equations of each types (4a) and (4b) or (5a) 
and (5b). 

Thus, for example, having fixed the basis of vectors (Ill' 1l2' 1l3), the three equations 
of type D~g! = 0 transformed to angle-deformation coordinates will give: 
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(8b) 

and the three of the type D~g: = 0: 

~(Xi2 + ~(Xi3 + ~(X~6 + ~(X;6 - ~(Xi6 + 2 ~(X12 ~(X26 + 2 ~(X13 ~(X36 = 0 (9a) 

~(Xi2 + ~(Xi4 + ~(X~3 + ~(X;4 - ~(X~4 + 2 ~(X12 ~(X14 + 2 ~(X23 ~(X34 = 0 (9b) 

~(Xi3 + ~(Xi5 + ~(X~3 + ~(X~5 - ~(X~5 + 2 ~(X13 ~(X15 + 2 ~(X23 ~(X25 = o. (ge) 

Eqs (8a - 8e) are those which Cihla and Pliva 6 put forward as redundancy relations 
of octahedral XY 6 molecules. 

Eqs (9a - ge) need not be considered in the calculations of harmonic force fields, 
because besides not containing linear terms, they imply angle deformation between 
opposing bonds in the equilibrium configuration. 

Any other of the remaining three orthogonal vector bases in the equilibrium con
figuration containing the vector III gives likewise Eqs (8a-Be) and (9a-ge). Now 

FIG. I 

Spatial distribution of the atoms X (central) 
and Y in an octahedral XY 6 molecule 
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then, any of the four orthogonal vector bases in equilibrium containing the vector 86 

gives, on the one hand, the three equations of the type D;1~! = 0: 

(lOa) 

(lOb) 

(IOe) 

and, on the other hand, the three of the type D:1~: = 0: 

~Q(i 4 + ~Q(i 5 + ~Q(~6 + ~Q(~6 - ~Q(i6 + 2 ~Q(14 ~OC46 + 2 ~OC15 ~OC56 = 0 (11 a) 

~Q(;5 + ~OC~6 + ~OC~5 + ~OC~6 - ~OC~4 + 2 ~OC25 ~OC45 + 2 ~OC26 ~OC46 = 0 (11 b) 

~Q(;4 + ~Q(~6 + ~Q(~5 + ~OC~6 - ~OC~5 + 2 ~OC34 ~Q(45 + 2 ~OC36 ~OC56 = o. (11 c) 

Another twelve bases are still possible including a set of three co-planar bond vec
tors, since outside of the equilibrium configuration they will lose their co-planar 
condition. However, we have been able to prove that any of these bases gives only 
non-linear redundancy relations among the angle-deformation coordinates. There
fore, they need not be considered in the calculation of harmonic force fields. 

Thus, Eqs (8a-8e) and (lOa-lOe) are the only ones to contain linear terms. 
Although such linear terms are equal in both series of equations, their quadratic 
terms are different, and, as a result, the complete redundancy relations for the octa
hedral XY 6 branchings are to be obtained by combining Eqs (8a -8e) and (lOa -IOe). 

2(~Q(23 + ~OC25 + ~OC34 + ~O(45) + (~OC1.2 ~OC13 + ~OC12 ~OC15 + ~OC1.3 ~OC14 + 
+ ~Q(14 ~OC15 + ~Q(26 ~OC36 + ~OC26 ~OC56 + ~OC36 ~OC46 + ~OC46 ~O(56) = 0 (12a) 

2(~OC12 + ~OC14 + ~OC26 + ~O(46) + (~OC13 ~OC23 + ~OC13 ~OC34 + ~OC15 ~OC25 + 
+ ~OC15 ~OC45 + ~OC23 ~OC36 + ~OC25 ~OC56 + ~OC34 ~OC36 + ~OC45 ~O(56) = 0 (12b) 

2(~OC13 + ~OC15 + ~OC36 + ~O(56) + (~OC12 ~OC23 + ~OC12 ~OC25 + ~OC14 ~OC34 + 
+ ~OC14 ~Q(45 + ~OC23 ~OC26 + ~OC25 ~OC26 + ~OC34 ~OC46 + ~OC45 ~O(46) = 0 (12e) 

Eqs (12a -12e), as they contain equivalent terms of deformation, are formally 
identical, and can be re-grouped in a single equation: 
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2(Acx12 + ACX13 + Acx14 + ACX15 + ACX23 + ACX25 + ACX26 + ACX34 + ACX36 + 
+ ACX45 + ACX46 + ACX 56) + (AcxL2 Acx 13 + ACX12 ACX15 + Acx 12 ACX23 + 
+ Acx 12 ACX2 5 + Acx13 ACX14 + ACX13 ACX 23 + Acx13 ACX 34 + ACX 14 ACX 15 + 
+ ACX 14 ACX34 + ACX14 ACX4 5 + ACX15 ACX25 + ACX 1 5 ACX45 + ACX 23 ACX26 + 
+ ACX23 ACX 36 + ACX25 ACX2 6 + ACX 2 5 ACX 56 + ACX26 ACX 3 6 + ACX26 ACX56 + 
+ ACX34 ACX 36 + ACX 3 4 ACX46 + ACX 36 ACX46 + ACX45 ACX46 + ACX45 ACX 56 + 

+ ACX46 ACX 56) = ° . (13) 

This same equation was put forward, although without specifying its origin and 
with the opposite relationship of signs between linear and non-linear terms, by Kim 
and coworkers 12 for the calculation of Urey-Bradley's harmonic force field of octa
hedral molecules. 

Trigonal bipyramidal XY 5 molecules 

Fig. 2 shows the spatial distribution of atoms X and Y in a trigonal bipyramidal molecu
le. In this case, there will be two equations of the type (4a) and one of the type (4b). 
For example, for the basis (£1' £2' £3) the equation of the type Dg~! = 0, once 
transformed to the angle-deformation coordinates, yields: 

(3)1 /2 (Acx12 + Acx13 + ACX14 + ACX25 + ACX35 + ACX45) + 2(Acx12 ACX2 4 + 
+ Acx 13 ACX 34 - ACX14 ACX23 - ACX23 ACX45 + ACX24 ACX25 + ACX24 ACX35) + 
+ (ACX12 ACX23 + ACX12 ACX34 + ACX13 ACX23 + ACX13 ACX 24 + ACX 23 ACX25 + 

+ ACX23 ACX 35 + ACX2 4 ACX 35 + ACX 25 ACX34) = ° 

Y, 

FIG. 2 

(14) 

Spatial distribution of the atoms X (central) 
and Y in a trigonal bipyramidal XY5 mole
cule 
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and the two of the type D~n: = 0 yield: 

2(3)1/2 (ACX23 + ACX24 + A:X34) + (ACX~3 + ACX~4 + A:X~4) + 2(Acx~2 + ACX~3 + 
+ AtXi4) + 4(AtX12 AtX13 + Acx12 A:X14 + Acx1.3 ACXI4) + 2(Acx23 ACX24 + 

+ ACX23 ACX34 + ACX24 AC(34) = 0 (15a) 

(AlXi2 + Acxi3 + Acx~s + Acx~s) - i AtXis + (ACX12 ACX13 + ACX12 ACX3S + 
+ Acx1.3 Acx2S + ACX2S ACX3S) + 2(AtX12 AIX2S + ACX1.3 Acx3s) = o. (15b) 

The five remaining bases formed by non-coplanar vectors in equilibrium give equa
tions formally analogous to the previous ones although they involved different 
deformation coordinates in the quadratic terms. 

Combining adequately.the results obtained with the six bases the resulting equa
tions are 

(3)1/2 (ACX12 + AIX13 + ACX14 + AtX2S + AtX3S + Acx4S) + (AtX12 AIX23 + 
+ AtX12 ACX24 + AtX13 ACX23 + AtX13 ACX34 + ACX14 ACX24 + Acx14 ACX34 + 
+ ACX23 Acx2S + ACX23 ACX3S + AtX24 ACX25 + AIX24 AtX45 + ACX34 ACX35 + 

+ AOC34 AOC45) = 0 (16a) 

2(3)1/2 (AOC23 + AOC24 + AOC34) + (AtXi2 + Acxi3 + AIXi4 + ACX~3 + AOC~4 + 
+ AIX~5 + AOC~4 + ACX~5 + Acx~s) + 2(Acx12 ACX13 + AOC12 AOC14 + Acx13 ACX14 + 

+ AOC23 AOC24 + ACX23 AOC34 + ACX24 AOC34 + AOC25 AtX35 + ACX25 AOC45 + 
+ AtX35 AOC45) = 0 (16b) 

2(Aoci2 + Acxi3 + Aoci4 + ACX~5 + ACX~5 + AOC~5) - ! Aoci5 + 4(Acx12 ACX25 + 
+ AOC 13 AtX35 + AOC14 AOC45) + (Aoc12 AOC13 + AtX12 AtX14 + Aoc12 AOC35 + 
+ AOC12 AOC45 + AtX13 ACX14 + AOC 13 AOC25 + A:X13 AOC45 + ACX1.4 ACX25 + 

+ AtX14 AOC35 + AOC25 ACX3 5 + AtX25 AOC45 + Aoc3s AOC4S) = o. (16c) 

Four more bases are still possible, taking the set of the three co-planar bond 
vectors. Of these, only the one formed by the vectors (62 , 63, 64) gives equations with 
linear terms at the angle-deformation coordinates: 

(3)1/2 (AtX23 + ACX24 + AtX34) + (Acxi2 + AIXi3 + A:xi4) + 1(AtX~3 + ACX~4 + 
+ ACX~4) + 2(Aoc12 AOC13 + Acx12 AOC1.4 + AOC13 AOCI4) + (ACX23 ACX24 + 

+ AOC23 AOC34 + AOC24 AOC34) = 0 (17a) 
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(3)1/2 (ACX23 + ACX24 + AC(34) + (ACX~5 + ACX;5 + ACX!5) + t(ACX~3 + ACX~4 + 
+ ACX;4) + 2(Acx25 ACX 35 + ACX25 AX45 + ACX 35 AC(45) + (ACX23 ACX24 + 

(17b) 

(3)1/2 (ACX23 + ACX24 + AC(34) + t(ACX~3 + ACX~4 + ACX~4) + (ACX23 ACX24 + 
+ ACX23 ACX34 + ACX24 AC(34) - (ACX12 ACX25 + ACX 13 ACX35 + Acx14 AC(45) -

- (Acx12 ACX 35 + Acx 12 ACX45 + Acx 13 ACX25 + ACX13 ACX45 + ACX14 ACX25 + 
+ ACX!4 AC(35) = O. (17c) 

Eqs (17a-17b) lead to Eq. (16b) and combining the latter with Eq. (17c), which 
contains the same linear terms, we obtain: 

3(3)1/2 (ACX23 + ACX24 + AC(34) + (Acxi2 + Acxi3 + Acxi4 + Acx~s + ACX~5 + 
+ ACX!5) + -t(ACX~3 + ACX~4 + ACX;4) + 2(Acx12 Acx13 + Acx12 ACX!4 + 

+ ACX!3 ACX14 + ACX25 LlCX35 + ACX25 ACX45 + ACX35 AC(45) + 3(Acx23 ACX24 + 
+ ACX23 ACX34 + ACX24 AC( 34) - (Acx12 ACX 25 + ACX13 ACX 35 + ACX14 AC(45) -

- (Acx 12 ACX 35 + Acx 12 ACX45 + Acx13 ACX25 + ACX13 ACX45 + ACX14 ACX25 + 
+ ACX14 AC(35) = O. (18) 

Eqs (I6a) and (18) can be considered as the complete redundancy relation for the 
trigonal bipyramidal molecules. Therefore, these have to be considered when assessing 
the contributions of the linear force constants in the harmonic fields of such mole
cules. The redundancy relations (I6a) and (I8) do not contain equivalent linear terms 
and thus, each of these will induce a contribution corresponding to a different linear 
force constant (or intramolecular tension parameter). 
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